Global Behavior of a Higher-order Rational Difference Equation
نویسندگان
چکیده
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that equation is globally asymptotically stable.
منابع مشابه
STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملDynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$
The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...
متن کاملGlobal Dynamics for a Higher Order Rational Difference Equation
In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...
متن کاملQualitative Behavior of Rational Difference Equation of Big Order
Recently, there has been a lot of interest in studying the global attractivity, the boundedness character, and the periodicity nature of nonlinear difference equations see for example, [1– 22]. The study of the nonlinear rational difference equations of a higher order is quite challenging and rewarding, and the results about these equations offer prototypes towards the development of the basic ...
متن کاملDynamics and behavior of a higher order rational difference equation
We study the global result, boundedness, and periodicity of solutions of the difference equation xn+1 = a+ bxn−l + cxn−k dxn−l + exn−k , n = 0, 1, . . . , where the parameters a, b, c, d, and e are positive real numbers and the initial conditions x−t, x−t+1, . . . , x−1 and x0 are positive real numbers where t = max{l, k}, l 6= k. c ©2016 All rights reserved.
متن کامل